<<12345>>
11.

Let f:[0,1]→ R (the set of all real numbers) be a function .Suppose  the function f is twice differentiable

 f(0)=f(1) =0 and satisfies

 $f '' (x)-2 f'(x)+ f(x) \geq e^{x}, x \in [0,1]$.

 If the function  e-x f(x)  assumes its minimum in the interval [0,1] a  $x=\frac{1}{4}$, which of the following is true ?


A) $ f'(x) <f(x) ,\frac{1}{4}<x<\frac{3}{4}$

B) $f'(x) >f(x) ,0<x<\frac{1}{4}$

C) $ f'(x) <f(x) ,0<x<\frac{1}{4}$

D) $ f'(x) <f(x) ,\frac{3}{4}<x<1$



12.

Let f:[0,1]→ R (the set of all real numbers) be a function .Suppose  the function f is twice differentiable

 f(0)=f(1) =0 and satisfies

 $f '' (x)-2 f'(x)+ f(x) \geq e^{x}, x \in [0,1]$

 Which of the following is true for 0<x <1 


A) $0< f(x) <\infty $

B) $-\frac{1}{2}< f(x) <\frac{1}{2} $

C) $-\frac{1}{4}< f(x) <1$

D) $-\infty< f(x) <0 $



13.

 The function f(x) = 2|x|+|x+2|-||x+2|-2|x||  has a local minimum or a local maximum at x is equal to 


A) -2

B) $\frac{-2}{3}$

C) 2

D) $\frac{2}{3}$



14.

Let ω be a complex cube root of unity with ω ≠ 1 and P=[pij] be a n x n matrix with pij  =ω i+j. Then, P2≠ 0, when n is equal to 


A) 57

B) 55

C) 58

D) 56



15.

If   $3^{x}=4^{x-1}$    , then x is equal to


A) $\frac{2\log_{3}2}{2\log_{3}2-1}$

B) $\frac{2}{2-\log_{2}3}$

C) $\frac{1}{1-\log_{4}3}$

D) $\frac{2\log_{2}3}{2\log_{2}3-1}$



<<12345>>